Analysis of Moringa oleifera Quercetin Activity on Acetylcholinesterase (AChE) Inhibition in Alzheimer's Therapy with an In Silico Approach
DOI:
https://doi.org/10.30649/htmj.v22i2.762Keywords:
Keywords : Alzheimer’s disease, In silico, Acetylcholinesterase (AChE), Moringa oleifera, Quercetin.Abstract
Many plants contain active compounds that can be used to treat various diseases. One of these plants is Moringa oleifera Lam. (drumstick tree), which is known for its benefits in treating Alzheimer’s disease. The active compound quercetin found in Moringa oleifera has the ability to inhibit acetylcholinesterase (AChE), one of the primary causes of Alzheimer’s disease. Quercetin also has similar potential and functions to donepezil, a drug commonly used in Alzheimer’s therapy. This study aimed to examine the role of quercetin in inhibiting AChE as part of Alzheimer’s therapy using an in silico approach. The research utilized molecular docking, pharmacokinetic ADME predictions, and toxicity predictions to evaluate the active compound quercetin. The results showed that quercetin has similar potential to donepezil in inhibiting AChE, as they both share the same binding sites. Pharmacokinetic predictions revealed that quercetin is well-absorbed in the intestine and has better skin permeability compared to donepezil, although its ability to cross the Blood-Brain Barrier (BBB) is limited. Quercetin has a limited distribution in the body, a high binding affinity to plasma proteins, and acts as an inhibitor of CYP1A2 and CYP2C9 enzymes. Additionally, quercetin is effectively excreted by the body. It is predicted to have potential as an oral medication and is categorized as a class III compound based on its LD50 toxicity value
Keywords : Alzheimer’s disease, In silico, Acetylcholinesterase (AChE), Moringa oleifera, Quercetin
References
Alzheimer’s Association. (2020). 2020 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 16(3), 391–460. doi: 10.1002/alz.12068
Alzheimer’s Association. (2023). 2023 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 19(4), 1598–1695. doi: 10.1002/alz.13016
Benfenati, E. (2016). In Silico Methods for Predicting Drug Toxicity. Retrieved from http://www.springer.com/series/7651
Brust, J. C. M. (John C. M. ). (2019). Current diagnosis & treatment. Neurology.
Chen, X., Li, H., Tian, L., Li, Q., Luo, J., & Zhang, Y. (2020). Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five. Journal of Computational Biology, 27(9), 1397–1406. doi: 10.1089/cmb.2019.0323
Islam, M. S., Quispe, C., Hossain, R., Islam, M. T., Al-Harrasi, A., Al-Rawahi, A., Martorell, M., Mamurova, A., Seilkhan, A., Altybaeva, N., Abdullayeva, B., Docea, A. O., Calina, D., & Sharifi-Rad, J. (2021). Neuropharmacological Effects of Quercetin: A Literature-Based Review. In Frontiers in Pharmacology (Vol. 12). Frontiers Media S.A. doi: 10.3389/fphar.2021.665031
Khan, H., Ullah, H., Aschner, M., Cheang, W. S., & Akkol, E. K. (2020). Neuroprotective effects of quercetin in alzheimer’s disease. In Biomolecules (Vol. 10, Issue 1). MDPI AG. doi: 10.3390/biom10010059
Kim, H. S., Jeong, C.-H., & Lee, J.-K. (2022). Neuroprotective effects of Moringa oleifera leaf extracts. Food and Life, 2022(1), 19–26. doi: 10.5851/fl.2022.e1
Mahaman, Y. A. R., Huang, F., Wu, M., Wang, Y., Wei, Z., Bao, J., Salissou, M. T. M., Ke, D., Wang, Q., Liu, R., Wang, J. Z., Zhang, B., Chen, D., & Wang, X. (2018). Moringa Oleifera Alleviates Homocysteine-Induced Alzheimer’s Disease-Like Pathology and Cognitive Impairments. Journal of Alzheimer’s Disease, 63(3), 1141–1159. doi: 10.3233/JAD-180091
Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. In Neuropharmacology (Vol. 190). Elsevier Ltd. doi: 10.1016/j.neuropharm.2020.108352
Pires, D. E. V, Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures.
Pirie, R., Stanway-Gordon, H. A., Stewart, H. L., Wilson, K. L., Patton, S., Tyerman, J., Cole, D. J., Fowler, K., & Waring, M. J. (2024). An analysis of the physicochemical properties of oral drugs from 2000 to 2022. RSC Medicinal Chemistry. doi: 10.1039/d4md00160e
Qi, P., Li, J., Gao, S., Yuan, Y., Sun, Y., Liu, N., Li, Y., Wang, G., Chen, L., & Shi, J. (2020). Network Pharmacology-Based and Experimental Identification of the Effects of Quercetin on Alzheimer’s Disease. Frontiers in Aging Neuroscience, 12. doi: 10.3389/fnagi.2020.589588
Talevi, A. (2022). The ADME Encyclopedia (A. Talevi, Ed.). Cham: Springer International Publishing. doi: 10.1007/978-3-030-84860-6
Tang, S., Chen, R., Lin, M., Lin, Q., Zhu, Y., Ding, J., Hu, H., Ling, M., & Wu, J. (2022). Accelerating AutoDock Vina with GPUs. Molecules, 27(9). doi: 10.3390/molecules27093041
Trang A, & Khandar PB. (2023). Physiology, Acetylcholinesterase. StatPearls [Internet].
Zang, Q., Mansouri, K., Williams, A. J., Judson, R. S., Allen, D. G., Casey, W. M., & Kleinstreuer, N. C. (2017). In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. Journal of Chemical Information and Modeling, 57(1), 36–49. doi: 10.1021/acs.jcim.6b00625
Zwickl, C. M., Graham, J. C., Jolly, R. A., Bassan, A., Ahlberg, E., Anger, L. T., Beilke, L., Bellion, P., Brigo, A., Burleigh-Flayer, H., Cronin, M. T., Devlin, A. A., Fish, T., Glowienke, S., Gromek, K., Karmaus, A., Kemper, R., Kulkarni, S., Lo Piparo, E., … jj, M. (2022). Principles and Procedures for Assessment of Acute Toxicity Incorporating In Silico Methods 2 3. Retrieved from https://www.elsevier.com/open-access/userlicense/1.0/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hang Tuah Medical Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






