Hubungan Pemberian Terapi Oksigen Hiperbarik Terhadap Aktifitas Osteoblastik Dan Osteoklastik Pada Tikus Model Fraktur
Main Article Content
Abstract
Background : Fracture is a condition where the bone is cut off due to significant pressure which can be in the form of bending, twisting, or pulling due to trauma, work accidents, traffic accidents, as well as degeneration and pathological processes. Fractures can result in loss of productivity and individual disability. One of the adjuvant therapies to accelerate the bone healing process in patients with fractures is hyperbaric oxygen (HBO) therapy.
Objective: The purpose of this study was to determine the effect of Hyperbaric Oxygen therapy on the amount of osteoblasts and osteoclasts formed in ratsmodeled with diaphyseal femur fractures.
Methods: This research is an experimental study using a post test only control group design. The object of this study is a rat fracture model with TOHB therapy as the independent variable and a fracture model without HBO therapy as a control variable.
Results: The results of this study showed positive results on the effect of HBO therapy on the formation of osteoblastic and osteoclastic cells.
Conclusion: There was a significant difference in the number of osteoblast and osteoclast in fracture model mice treated with HBO compared to those not treated with HBO.
Keywords: HBO therapy, Fracture, Callus, Osteoblast, Osteoclast, Wistar Rat
Article Details
References
Bergdahl, C., Ekholm, C., Wennergren, D., Nilsson, F., & Möller, M. (2016). Epidemiology and patho-anatomical pattern of 2,011 humeral fractures: Data from the Swedish Fracture Register. BMC Musculoskeletal Disorders, 17(1), 1–10. https://doi.org/10.1186/s12891-016-1009-8
Bikbov, M. M., Fayzrakhmanov, R. R., Kazakbaeva, G. M., Zainullin, R. M., Salavatova, V. F., Gilmanshin, T. R., Arslangareeva, I. I., Nikitin, N. A., Panda-Jonas, S., Mukhamadieva, S. R., Yakupova, D. F., Khikmatullin, R. I., Aminev, S. K., Nuriev, I. F., Zaynetdinov, A. F., Uzianbaeva, Y. V., & Jonas, J. B. (2018). Frequency and Associated Factors of Bone Fractures in Russians: The Ural Eye and Medical Study. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25928-1
Büren, C., Lögters, T., Oezel, L., Rommelfanger, G., Scholz, A. O., Windolf, J., & Windolf, C. D. (2018a). Effect of hyperbaric oxygen therapy (HBO) on implant-associated osteitis in a femur fracture model in mice. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0191594
Büren, C., Lögters, T., Oezel, L., Rommelfanger, G., Scholz, A. O., Windolf, J., & Windolf, C. D. (2018b). Effect of hyperbaric oxygen therapy (HBO) on implant-associated osteitis in a femur fracture model in mice. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191594
Choudhury, R. (2018). Hypoxia and hyperbaric oxygen therapy: A review. International Journal of General Medicine, 11, 431–442. https://doi.org/10.2147/IJGM.S172460
Dias, P. C., Limirio, P. H. J. O., Linhares, C. R. B., Bergamini, M. L., Rocha, F. S., Morais, R. B. de, Balbi, A. P. C., Hiraki, K. R. N., & Dechichi, P. (2018). Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats. Connective Tissue Research, 59(6), 574–580. https://doi.org/10.1080/03008207.2018.1434166
Fischer, V., Haffner-Luntzer, M., Amling, M., & Ignatius, A. (2018). Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. European Cells and Materials, 35, 365–385. https://doi.org/10.22203/eCM.v035a25
Gardin, C., Bosco, G., Ferroni, L., Quartesan, S., Rizzato, A., Tatullo, M., & Zavan, B. (2020). Hyperbaric oxygen therapy improves the osteogenic and vasculogenic properties of mesenchymal stem cells in the presence of inflammation in vitro. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041452
GR, S. (2011). The effect of hyperbaric oxygen therapy on osteoclast formation and bone resorption. Frontiers in Endocrinology, 2. https://doi.org/10.3389/conf.fendo.2011.02.00002
Jennison, T., & Brinsden, M. (2019). Fracture admission trends in England over a ten-year period. Annals of the Royal College of Surgeons of England, 101(3), 208–214. https://doi.org/10.1308/rcsann.2019.0002
Kumar, S., Dewi, A. H., Listyarifah, D., & Ana, I. D. (2015). Remodeling Capacity of Femoral Bone Defect by POP-CHA Bone Substitute: A Study in Rats’ Osteoclast (First Series of POP-based Bone Graft Improvement). The Indonesian Journal of Dental Research, 1(2), 116. https://doi.org/10.22146/theindjdentres.10008
Lam, G., Fontaine, R., Ross, F. L., & Chiu, E. S. (2017). Hyperbaric oxygen therapy: Exploring the clinical evidence. Advances in Skin and Wound Care, 30(4), 181–190. https://doi.org/10.1097/01.ASW.0000513089.75457.22
Li, H., Yu, D., Wu, S., Zhang, Y., & Ma, L. (2019). Multiple comparisons of the efficacy and safety for seven treatments in tibia shaft fracture patients. Frontiers in Pharmacology, 10(APR), 1–12. https://doi.org/10.3389/fphar.2019.00197
Marongiu, G., Contini, A., Lepri, A. C., Donadu, M., Verona, M., & Capone, A. (2020). The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: A systematic review of clinical evidence. Bioengineering, 7(1), 1–16. https://doi.org/10.3390/bioengineering7010022
Marshall, R. A., Mandell, J. C., Weaver, M. J., Ferrone, M., Sodickson, A., & Khurana, B. (2018). Imaging features and management of stress, atypical, and pathologic fractures. Radiographics, 38(7), 2173–2192. https://doi.org/10.1148/rg.2018180073
Memar, M. Y., Yekani, M., Alizadeh, N., & Baghi, H. B. (2019). Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomedicine and Pharmacotherapy, 109(October 2018), 440–447. https://doi.org/10.1016/j.biopha.2018.10.142
Moghadam, N., Hieda, M., Ramey, L., Levine, B. D., & Guilliod, R. (2020). Hyperbaric Oxygen Therapy in Sports Musculoskeletal Injuries. Medicine and Science in Sports and Exercise, 52(6), 1420–1426. https://doi.org/10.1249/MSS.0000000000002257
Prameswari, N. (2018). Program and Proceeding Book.
Rufus-Membere, P., Holloway-Kew, K. L., Diez-Perez, A., Kotowicz, M. A., & Pasco, J. A. (2019). Associations between bone impact microindentation and clinical risk factors for fracture. Endocrinology, 160(9), 2143–2150. https://doi.org/10.1210/en.2019-00415
Singaram, S., & Naidoo, M. (2019). The physical, psychological and social impact of long bone fractures on adults: A review. African Journal of Primary Health Care and Family Medicine, 11(1), 1–9. https://doi.org/10.4102/phcfm.v11i1.1908
Stenevi Lundgren, S., Rosengren, B. E., Dencker, M., Nilsson, J., Karlsson, C., & Karlsson, M. K. (2017). Low physical activity is related to clustering of risk factors for fracture—a 2-year prospective study in children. Osteoporosis International, 28(12), 3373–3378. https://doi.org/10.1007/s00198-017-4203-0
Turgut, A., Arlı, H., Altundağ, Ü., Hancıoğlu, S., Egeli, E., & Kalenderer, Ö. (2020). Effect of COVID-19 pandemic on the fracture demographics: Data from a tertiary care hospital in Turkey. Acta Orthopaedica et Traumatologica Turcica, 54(4), 355–363. https://doi.org/10.5152/j.aott.2020.20209
Varshney, M. K. (2016). mebooksfree.com.
Wu, S. C., Rau, C. S., Kuo, S. C. H., Chien, P. C., & Hsieh, C. H. (2019). The influence of ageing on the incidence and site of trauma femoral fractures: a cross-sectional analysis. BMC Musculoskeletal Disorders, 20(1), 413. https://doi.org/10.1186/s12891-019-2803-x
Yong, E. L., Ganesan, G., Kramer, M. S., Howe, T. Sen, Koh, J. S. B., Thu, W. P., Logan, S., Cauley, J. A., & Tan, K. B. (2020). Risk Factors and Trends Associated with Mortality among Adults with Hip Fracture in Singapore. JAMA Network Open, 3(2), 1–10. https://doi.org/10.1001/jamanetworkopen.2019.19706
Zhang, M., Ho, H. C., Sheu, T. J., Breyer, M. D., Flick, L. M., Jonason, J. H., Awad, H. A., Schwarz, E. M., & O’Keefe, R. J. (2011). EP1-/- mice have enhanced osteoblast differentiation and accelerated fracture repair. Journal of Bone and Mineral Research, 26(4), 792–802. https://doi.org/10.1002/jbmr.272