Hubungan Pemberian Terapi Oksigen Hiperbarik Terhadap Aktifitas Osteoblastik Dan Osteoklastik Pada Tikus Model Fraktur
DOI:
https://doi.org/10.30649/htmj.v19i2.267Kata Kunci:
terapi OHB, Fraktur, kalus, osteoblas, osteoklas, Tikus wistarAbstrak
Latar Belakang : Fraktur adalah suatu keadaan terputusnya tulang akibat tekanan signifikan yang dapat berupapembengkokan, puntiran, atau tarikan akibat trauma, kecelakaan kerja, kecelakaan lalu lintas, serta proses degenerasi dan patologis. Fraktur dapat mengakibatkan hilangnya produktivitas dan kecacatan individu. Salah satu terapi adjuvant untukmempercepat proses penyembuhan tulang pada pasien fraktur adalah Terapi Oksigen Hiperbarik (OHB).
Tujuan:Penelitian ini bertujuan untuk mengetahui pengaruh terapi oksigen hiperbarik terhadap jumlah osteoblas dan osteoklas yang terbentuk pada tikus model fraktur femur diafisis.
Metode :Penelitian ini merupakan penelitian eksperimen dengan menggunakan post test only control group design. Objekdalam penelitian ini adalah model fraktur tikus dengan terapi OHB sebagai variabel bebas dan model fraktur tanpa terapiOHB sebagai variabel kontrol.
Hasil: Hasil penelitian ini menunjukkan hasil positif tentang pengaruh terapi Oksigen Hiperbarik terhadap pembentukansel osteoblastik dan osteoklastik.
Kesimpulan: Adanya perbedaan signifikan dari jumlah osteoblas dan osteoklas pada tikus model fraktur yang diterapi OHB dibandingkan dengan yang tidak diterapi OHB.
Kata kunci: Terapi OHB, Fraktur, Kalus, Osteoblas, Osteoklas, Tikus Wistar
Referensi
Bergdahl, C., Ekholm, C., Wennergren, D., Nilsson, F., & Möller, M. (2016). Epidemiology and patho-anatomical pattern of 2,011 humeral fractures: Data from the Swedish Fracture Register. BMC Musculoskeletal Disorders, 17(1), 1–10. https://doi.org/10.1186/s12891-016-1009-8
Bikbov, M. M., Fayzrakhmanov, R. R., Kazakbaeva, G. M., Zainullin, R. M., Salavatova, V. F., Gilmanshin, T. R., Arslangareeva, I. I., Nikitin, N. A., Panda-Jonas, S., Mukhamadieva, S. R., Yakupova, D. F., Khikmatullin, R. I., Aminev, S. K., Nuriev, I. F., Zaynetdinov, A. F., Uzianbaeva, Y. V., & Jonas, J. B. (2018). Frequency and Associated Factors of Bone Fractures in Russians: The Ural Eye and Medical Study. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25928-1
Büren, C., Lögters, T., Oezel, L., Rommelfanger, G., Scholz, A. O., Windolf, J., & Windolf, C. D. (2018a). Effect of hyperbaric oxygen therapy (HBO) on implant-associated osteitis in a femur fracture model in mice. PLoS ONE, 13(1). https://doi.org/10.1371/journal.pone.0191594
Büren, C., Lögters, T., Oezel, L., Rommelfanger, G., Scholz, A. O., Windolf, J., & Windolf, C. D. (2018b). Effect of hyperbaric oxygen therapy (HBO) on implant-associated osteitis in a femur fracture model in mice. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191594
Choudhury, R. (2018). Hypoxia and hyperbaric oxygen therapy: A review. International Journal of General Medicine, 11, 431–442. https://doi.org/10.2147/IJGM.S172460
Dias, P. C., Limirio, P. H. J. O., Linhares, C. R. B., Bergamini, M. L., Rocha, F. S., Morais, R. B. de, Balbi, A. P. C., Hiraki, K. R. N., & Dechichi, P. (2018). Hyperbaric Oxygen therapy effects on bone regeneration in Type 1 diabetes mellitus in rats. Connective Tissue Research, 59(6), 574–580. https://doi.org/10.1080/03008207.2018.1434166
Fischer, V., Haffner-Luntzer, M., Amling, M., & Ignatius, A. (2018). Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. European Cells and Materials, 35, 365–385. https://doi.org/10.22203/eCM.v035a25
Gardin, C., Bosco, G., Ferroni, L., Quartesan, S., Rizzato, A., Tatullo, M., & Zavan, B. (2020). Hyperbaric oxygen therapy improves the osteogenic and vasculogenic properties of mesenchymal stem cells in the presence of inflammation in vitro. International Journal of Molecular Sciences, 21(4). https://doi.org/10.3390/ijms21041452
GR, S. (2011). The effect of hyperbaric oxygen therapy on osteoclast formation and bone resorption. Frontiers in Endocrinology, 2. https://doi.org/10.3389/conf.fendo.2011.02.00002
Jennison, T., & Brinsden, M. (2019). Fracture admission trends in England over a ten-year period. Annals of the Royal College of Surgeons of England, 101(3), 208–214. https://doi.org/10.1308/rcsann.2019.0002
Kumar, S., Dewi, A. H., Listyarifah, D., & Ana, I. D. (2015). Remodeling Capacity of Femoral Bone Defect by POP-CHA Bone Substitute: A Study in Rats’ Osteoclast (First Series of POP-based Bone Graft Improvement). The Indonesian Journal of Dental Research, 1(2), 116. https://doi.org/10.22146/theindjdentres.10008
Lam, G., Fontaine, R., Ross, F. L., & Chiu, E. S. (2017). Hyperbaric oxygen therapy: Exploring the clinical evidence. Advances in Skin and Wound Care, 30(4), 181–190. https://doi.org/10.1097/01.ASW.0000513089.75457.22
Li, H., Yu, D., Wu, S., Zhang, Y., & Ma, L. (2019). Multiple comparisons of the efficacy and safety for seven treatments in tibia shaft fracture patients. Frontiers in Pharmacology, 10(APR), 1–12. https://doi.org/10.3389/fphar.2019.00197
Marongiu, G., Contini, A., Lepri, A. C., Donadu, M., Verona, M., & Capone, A. (2020). The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: A systematic review of clinical evidence. Bioengineering, 7(1), 1–16. https://doi.org/10.3390/bioengineering7010022
Marshall, R. A., Mandell, J. C., Weaver, M. J., Ferrone, M., Sodickson, A., & Khurana, B. (2018). Imaging features and management of stress, atypical, and pathologic fractures. Radiographics, 38(7), 2173–2192. https://doi.org/10.1148/rg.2018180073
Memar, M. Y., Yekani, M., Alizadeh, N., & Baghi, H. B. (2019). Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomedicine and Pharmacotherapy, 109(October 2018), 440–447. https://doi.org/10.1016/j.biopha.2018.10.142
Moghadam, N., Hieda, M., Ramey, L., Levine, B. D., & Guilliod, R. (2020). Hyperbaric Oxygen Therapy in Sports Musculoskeletal Injuries. Medicine and Science in Sports and Exercise, 52(6), 1420–1426. https://doi.org/10.1249/MSS.0000000000002257
Prameswari, N. (2018). Program and Proceeding Book.
Rufus-Membere, P., Holloway-Kew, K. L., Diez-Perez, A., Kotowicz, M. A., & Pasco, J. A. (2019). Associations between bone impact microindentation and clinical risk factors for fracture. Endocrinology, 160(9), 2143–2150. https://doi.org/10.1210/en.2019-00415
Singaram, S., & Naidoo, M. (2019). The physical, psychological and social impact of long bone fractures on adults: A review. African Journal of Primary Health Care and Family Medicine, 11(1), 1–9. https://doi.org/10.4102/phcfm.v11i1.1908
Stenevi Lundgren, S., Rosengren, B. E., Dencker, M., Nilsson, J., Karlsson, C., & Karlsson, M. K. (2017). Low physical activity is related to clustering of risk factors for fracture—a 2-year prospective study in children. Osteoporosis International, 28(12), 3373–3378. https://doi.org/10.1007/s00198-017-4203-0
Turgut, A., Arlı, H., Altundağ, Ü., Hancıoğlu, S., Egeli, E., & Kalenderer, Ö. (2020). Effect of COVID-19 pandemic on the fracture demographics: Data from a tertiary care hospital in Turkey. Acta Orthopaedica et Traumatologica Turcica, 54(4), 355–363. https://doi.org/10.5152/j.aott.2020.20209
Varshney, M. K. (2016). mebooksfree.com.
Wu, S. C., Rau, C. S., Kuo, S. C. H., Chien, P. C., & Hsieh, C. H. (2019). The influence of ageing on the incidence and site of trauma femoral fractures: a cross-sectional analysis. BMC Musculoskeletal Disorders, 20(1), 413. https://doi.org/10.1186/s12891-019-2803-x
Yong, E. L., Ganesan, G., Kramer, M. S., Howe, T. Sen, Koh, J. S. B., Thu, W. P., Logan, S., Cauley, J. A., & Tan, K. B. (2020). Risk Factors and Trends Associated with Mortality among Adults with Hip Fracture in Singapore. JAMA Network Open, 3(2), 1–10. https://doi.org/10.1001/jamanetworkopen.2019.19706
Zhang, M., Ho, H. C., Sheu, T. J., Breyer, M. D., Flick, L. M., Jonason, J. H., Awad, H. A., Schwarz, E. M., & O’Keefe, R. J. (2011). EP1-/- mice have enhanced osteoblast differentiation and accelerated fracture repair. Journal of Bone and Mineral Research, 26(4), 792–802. https://doi.org/10.1002/jbmr.272






