The Effect of Arterial Oxygen Saturation on the Occurrence of Thrombocytopenia In Pediatric Patients with Tetralogy of Fallot
DOI:
https://doi.org/10.30649/htmj.v20i1.343Kata Kunci:
Tetralogy fallot, saturasi oksigen arterial, trombositopeniaAbstrak
Tetralogy Fallot adalah salah satu PJB sianotik terbanyak dengan risiko hipoksia yang makin memberat dengan penambahan usia pasien. Trombositopenia adalah salah satu konsekuensi dari kondisi hipoksia kronis dengan risiko perdarahan. Tujuan penelitian ini ingin mengetahui hubungan antara saturasi oksigen arterial dengan trombositopenia pada pasien tetralogy fallot. Metode penelitian: penelitian kasus kontrol, populasi pasien TF dengan trombositopenia dan non-trombositopenia, dilakukan pengukuran usia, saturasi oksigen arterial dan jumlah trombosit. Dilakukan uji regresi logistik ganda untuk mengetahui pengaruh saturasi oksigen arterial pada kejadian trombositopenia pada 94 pasien TF. Hasil penelitian: dari 94 populasi TF yang terbagi 47 populasi trombositopenia dan 47 populasi non-trombositopenia terdapat pengaruh saturasi oksigen arterial dengan kejadian trombositopenia dengan p = 0,000 (bermakna). Kesimpulan: usia pasien yang terus meningkat akan menyebabkan hipoksia kronis dan trombositopenia.
Referensi
Abdulla, R. 2011. Heart Diseases in Children: A Pediatrician's Guide, Springer Science & Business Media
Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res 2017;120:908–22
Djer MM, Madiyono B. Tatalaksana Penyakit Jantung Bawaan. Sari Pediatri. 2007;2(3):155–62.
Edrees Mohammad Ameen, 2021. Arterial blood gases and some blood parameters in Tetralogy of Fallot patients. ZJPAS: 2021, 33 (3): 117-123
Fixler DE, Xu P, Nembhard WN, Ethen MK, Canfield MA. Age at referral and mortality from critical congenital heart disease. Pediatrics. 2014;134(1):e98–105
Frederique Bailliard, Robert H Anderson., 2009. Tetralogy of Fallot. Orphanet J Rare Dis. 4: 2.
Hanna jung, Youngok Lee, 2020. Reversible Hypoxia-Induced Thrombocytopenia in an Infant of Pulmonary Atresia with Ventricular Septal Defect. International Medical Case Reports Journal 2020:13 461–464
Horigome H, Hiramatsu Y, Shigeta O, Nagasawa T, Matsui A. Overproduction of platelet microparticles in cyanotic congenital heart disease with polycythemia. J Am Coll Cardiol. 2002;39(6):1072–1077.
Jenkins K. Mortality with congenital heart defects in England and Wales, 1959-2009. Much progress, but more to do. Arch Dis Child. 2012;97(10):859–860
Kaufman RM, Airo R, Pollack S, Crosby WH. Circulating megakaryocytes and platelet release in the lung. Blood. 1965;26:720–731
Lill MC, Perloff JK, Child JS. Pathogenesis of thrombocytopenia in cyanotic congenital heart disease. Am J Cardiol. 2006;98:254–8
Liu Y, Chen S, Zuhlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 2019;48:455–63
Machlus KR, Italiano JJ. The incredible journey: from megakaryocyte development to platelet formation. J CELL BIOL. 2013;201(6):785–96.
MacColl CE, Manlhiot C, Page C, McCrindle BW, Miner SE, Jaeggi ET, et al. Factors associated with in utero demise of fetuses that have underlying cardiac pathologies. Pediatr Cardiol. 2014;35(8):1403–1414
Matter RM, Ragab IA, Roushdy AM, Ahmed AG, Aly HH, Ismail EA. Determinants of platelet count in pediatric patients with congenital cyanotic heart disease: role of immature platelet fraction. Congenit Heart Dis. 2018;13(1):118–123
Matthew E Oster, Kyung A Lee, Margaret A Honey, Tiffany Riehle-Colarusso, Mikyong Shin, Adolfo Correa, Temporal trends in survival among infants with critical congenital heart defects. Pediatrics. 2013 May;131(5):e1502-8.p2012-3435).
Michael H. Kroll and Vahid Afshar-Kharghan. Platelets in pulmonary vascular physiology and pathology. Pulm Circ. 2012 Jul-Sep; 2(3): 291–308.
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. American Heart Association Statistics Committee. Stroke Statistics Subcommittee Heart disease and stroke statistics 2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.
Nadiv Shapira, Amnon Rosenthal, Kathleen Heidelberger, Rachel Badanowski, Douglas Behrendt, Pulmonary vascular morphology in shunted and nonshunted patients with tetralogy of Fallot J Thorac Cardiovasc Surg 83:650-658, 1982
Olgar S, Ertugrul T, Nisli K, Devecioglu O, Turkan E. Shunt operations improved thrombocytopenia in a patient with congenital cyanotic heart disease. Ann Thorac Cardiovasc Surg. 2008;14(5):329–332
Randa M Matter, Iman A Ragab, Alaa M Roushdy, Ahmed G Achmed, Hanan H Aly, Eman A Ismail. Determinants of platelet count in pediatric patients with congenital cyanotic heart disease: Role of immature platelet fraction. Congenit Heart Dis. 2018 Jan;13(1):118-123
RJ Johnson, Sheila G Haworth. Pulmonary vascular and alveolar development in tetralogy of fallot: a recommendation for early correction. Thorax 1982;37:893-901






